
Scalable Work Stealing
∗

James Dinan, D. Brian Larkins,
P. Sadayappan

Dept. Computer Science and Engineering
The Ohio State University

Columbus, OH 43221
dinan, larkins, saday@cse.ohio-state.edu

Sriram Krishnamoorthy, Jarek Nieplocha
Pacific Northwest National Laboratory

Richland, WA 99352
sriram@pnl.gov

ABSTRACT

Irregular and dynamic parallel applications pose significant
challenges to achieving scalable performance on large-scale
multicore clusters. These applications often require ongoing,
dynamic load balancing in order to maintain efficiency. Scal-
able dynamic load balancing on large clusters is a challenging
problem which can be addressed with distributed dynamic
load balancing systems. Work stealing is a popular approach
to distributed dynamic load balancing; however its perfor-
mance on large-scale clusters is not well understood. Prior
work on work stealing has largely focused on shared mem-
ory machines. In this work we investigate the design and
scalability of work stealing on modern distributed memory
systems. We demonstrate high efficiency and low overhead
when scaling to 8,192 processors for three benchmark codes:
a producer-consumer benchmark, the unbalanced tree search
benchmark, and a multiresolution analysis kernel.

Keywords

Dynamic Load Balancing, Work Stealing, Task Pools, PGAS,
ARMCI, Global Arrays

1. INTRODUCTION
Many applications exhibit irregularity in the dynamic gen-

eration of units of parallel computation, especially with nested
or recursive parallelism. Irregularity often arises due to spar-
sity present in the data. For example, in scientific simu-
lations spatial sparsity of the system often translates into
sparsity in the numerical model [38]. Recursive spatial de-
composition is a convenient and natural means for express-
ing many such algorithms. However, recursive codes of-
ten dynamically expose parallelism by splitting spatial units

∗This work was supported by the U.S. Department of Energy
through awards #DE-FC02-06ER25755 and #DE-AC05-
00OR22725 and the National Science Foundation through
award #0403342. We thank the Molecular Sciences Com-
puting Facility (MSCF) at the Pacific Northwest National
Laboratory (PNNL) for the use of their computing facilities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage, and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC 09 November 14-20, 2009, Portland, Oregon, USA
Copyright 2009 ACM 978-1-60558-744-8/09/11 ...$10.00.

into smaller tasks requiring a system to support dynamic
scheduling of evolving parallelism. For these schemes, the
quantity and slackness of available parallelism may have
complex dependencies on input data, further confounding
static scheduling approaches.

Randomized work stealing is a distributed dynamic load
balancing scheme, popularized by the runtime system for the
Cilk [16] parallel programming language. Under work steal-
ing, idle processors select victim processors at random and
attempt to steal work from them. Work stealing has been
proven to be optimal for a large class of problems and has
tight space bounds [5, 23]. However, the scalability of work
stealing has not been well explored on modern large-scale
systems. In particular, concerns exist that the randomized
nature of work stealing can lead to long idle times and poor
scalability on large-scale clusters.

The introduction of RDMA, or Remote Direct Memory
Access, high performance interconnect networks has facil-
itated efficient implementations of Partitioned Global Ad-
dress Space (PGAS) parallel programming models [8, 9, 30,
34, 36, 39]. PGAS models provide the programmer with
a convenient, partitioned global view of memory across all
nodes in the computation, with efficient one-sided access to
data on remote nodes. This one-sided remote access model
is a natural implementation vehicle for implementing work
stealing’s one-sided steal operations. Such programming
models both support and motivate our work, as discussed
in Section 6.

In this work, we investigate the design of a scalable run-
time system to support dynamic load balancing through
work stealing using the PGAS programming model provided
by the Aggregate Remote Memory Copy Interface (ARMCI)
[29]. We propose techniques to reduce locking on the critical
path and reduce contention; schemes to reduce the overhead
of task creation; a work splitting scheme that enhances scal-
ability by maximizing the availability of work; and a cus-
tomized locking scheme that allows for early aborting to
avoid waiting on stale resources. We observe that while the
techniques employed to achieve scalability turned out to be
simple, the process of identifying the problems and the solu-
tion was non-trivial. In particular, the issues identified and
addressed were amplified due to the scale of the systems we
were targeting, and have not been reported or tackled in the
literature.

We evaluate the efficiency and scalability of our system
on a modern multicore cluster equipped with an rDMA in-
terconnect that supports efficient execution of PGAS pro-
grams. The implementation was evaluated on three bench-

mark codes that required effective dynamic load balancing to
scale to large process counts. Using our system, we demon-
strate the scalability of randomized work-stealing on up to
8192 processors. We are not aware any demonstrations of
effectiveness of work stealing at this scale on a distributed
memory machine.

The rest of the paper is organized as follows. In Section 2
we present an overview of the task parallel programming
model and dynamic load balancing problem; in Sections 3
and Section 4 we explore design issues and optimizations
to reduce overhead and increase efficiency; and in Section 5
we present an experimental evaluation. Related work is dis-
cussed in Section 6 and Section 7 concludes the paper.

2. DYNAMIC LOAD BALANCINGMODEL
In this section we discuss the dynamic load balancing and

task execution model that we consider in this work. The dy-
namic load balancing work in the literature can be expressed
and understood through the use of task pools. Task pools
provide a convenient abstraction that allows the program-
mer to express a parallel computation as a set of dynamic
tasks. A task is the basic unit of work and each task is exe-
cuted in the context of a process participating in the parallel
computation. In the task pool programming model, the pro-
grammer first seeds the task pool with an initial set of tasks
and then processes the task pool in parallel as shown in Al-
gorithm 1.

Algorithm 1 Task pool execution model

{ Let Tp be a distributed task pool }
Tp ← {initial tasks...}
while t← next task(Tp) do

execute task(t)
end while

Each task is represented by its task descriptor which pro-
vides the task’s arguments, including references to locations
in the global address space where the task will fetch its in-
puts and store its results. Tasks execute with respect to
data stored in the partitioned global address space, mak-
ing them portable and enabling them to be executed on any
process in the computation. Tasks may also create new sub-
tasks and enter them into the task pool. This allows for the
implementation of recursive parallelism and allows the pro-
grammer to capture parent-child data dependencies. Tasks
are processed from the task pool in LIFO order (Last In
First Out), yielding a depth-first traversal of the task tree
and bounding the space requirements of the task pool as
proportional to O(Tdepth).

We restrict our task execution model by requiring that all
tasks enqueued in the task pool are independent. Parent-
child dependencies can be expressed through dynamic task
creation. However, once enqueued, tasks must be able to
execute to completion without blocking. Tasks are allowed
to communicate through data stored in the global address
space, however tasks must not wait for results produced by
any concurrently executing tasks. These restrictions allow
us to relax fairness constraints on task scheduling and make
it possible to avoid the need for migrating partially executed
tasks to balance the load. This model captures the execu-
tion style of many significant applications as demonstrated
in Section 5 and allows us to optimize for their efficient ex-

ecution.

2.1 Distributed Task Pools
Task pools can be implemented using either a centralized

or distributed approach. Centralized task pools utilize a
work server that provides a central location for storing the
set of available tasks. This scheme is convenient for small
systems, however it provides poor scaling to larger machines.
Distributed task pools store patches of the task pool over a
set of work queues that are distributed across the processes
in the computation. The ratio of work queues to processors
can be varied, allowing for a variety schemes with different
properties.

In this work we focus on a 1 : 1 scheme where each process
maintains its own work queue, which allows for efficient local
access. Under this scheme, all processes perform work with
respect to their own task queue, pushing new tasks on the
head of the queue and popping tasks from the head to get
the next task to execute in LIFO order.

2.2 PGAS Task Pools
Partitioned Global Address Space (PGAS) programming

models provide new opportunities for the efficient and scal-
able implementation of task pools on distributed memory
systems. These programming models provide a global view
of physically distributed data along with mechanisms for
performing efficient, one-sided access. The ability to per-
form one-sided access to remote data is especially useful for
the implementation of distributed task pools where load bal-
ancing requests are generated asynchronously in response to
local work conditions. By storing distributed task queues in
the global address space, we gain the ability to perform one-
sided work stealing where, in spite of distributed memory,
steal operations can proceed without interrupting a working
remote process.

For our implementation, we focus on the PGAS program-
ming model provided by ARMCI, the Aggregate Remote
Memory Copy Interface [29]. ARMCI gives the benefit of
interoperability with multiple parallel programming models
including MPI [28], the industry standard message passing
interface, and the Global Arrays toolkit [30] which provides
a PGAS model for distributed shared multidimensional ar-
rays.

ARMCI is a portable, low level PGAS library that al-
lows the programmer to allocate regions of memory that
are available for remote access using one-sided get and put
operations. Under this model, computations take on the get-
compute-put model where data must be first fetched into a
local buffer before processing and then copied back into a
remote location. In addition, ARMCI provides portable sup-
port for a number of one-sided atomic operations aiding in
the design of distributed data structures that support direct
remote access.

2.3 Work Stealing Algorithm
Under work stealing, each process maintains a double-

ended work queue, or deque, of tasks. Processes execute
tasks from the head of their deque and when no work is
available they steal tasks from the tail of another process’
deque. The process that initiates the steal operation is re-
ferred to as the thief and the process that is targeted by the
steal is referred to as the victim. Because the thief is respon-
sible for initiating load balancing requests, work stealing is

a receiver-initiated load balancing algorithm and the total
volume of load balancing operations performed will therefore
be proportional to the load imbalance. In addition, given an
appropriate work division scheme, it has been proven that
the load imbalance under workstealing is bounded making
it a stable load balancing algorithm [27, 3].

A PGAS version of the work stealing algorithm is given
in Algorithm 2. When performing a steal operation, the
thief must first select its victim. Many schemes are possi-
ble, however random victim selection has been proven to be
optimal [5]. Once a victim has been selected, the thief must
then fetch the metadata for the victim’s work queue to de-
termine if they have work available. If they do, the thief
locks the victim’s queue and checks the metadata again to
ensure the work is still available. If so, it transfers one or
more tasks from the tail of the victim’s queue to its own
queue. If the victim has no work available, the thief selects
a new victim at random and repeats this process until either
work is found or global termination is detected.

Algorithm 2 Work stealing algorithm in the get-compute-
put PGAS style.

while ¬have work() ∧ ¬terminated do
v ← select victim()
m← get(v.metadata)
if work available(m) then

lock(v)
m← get(v.metadata)
if work available(m) then

w ← reserve work(m)
m← m− w
put(m,v.metadata)
queue← get(w,v.queue)

end if
unlock(v)

end if
end while

2.4 Termination Detection
In order to determine when the computation has com-

pleted, processes must actively detect when all processes are
idle and no more work is available. The process of detecting
this stable global state is referred to as termination detec-
tion. Many schemes are possible, ranging from centralized
schemes using shared counters and termination detection
servers to fully distributed schemes.

In this work, we utilize a distributed voting-tree scheme
where a binary tree is mapped onto the process space similar
to the scheme originally proposed in [15]. When a process
becomes idle, it combines the votes from its two children
with its own vote and passes the vote to its parent in the
tree. If a process has been the victim of a steal operation it
must call for a re-vote by passing a negative vote up the tree.
Once the vote reaches the root, the root process broadcasts
the result back down the tree. If any processes submitted
a negative vote, a new round of voting is started. Other-
wise the root broadcasts a message stating that termination
has been detected. Because of its tree structure, this termi-
nation detection algorithm detects termination in O(logN)
time where N is the number of processes.

2.5 Benchmark Applications

For this study, we have selected three benchmarks to eval-
uate our runtime system for work stealing: a multiresolution
analysis kernel targeted at high performance computational
chemistry codes, an unbalanced tree search benchmark, and
a producer-consumer benchmark. Our experiments were
conducted on a 2,310 node cluster with two quad-core pro-
cessors per node and Infiniband interconnect.

2.5.1 MADNESS Tree Creation Kernel

The MADNESS (Multiresolution ADaptive NumErical Sci-
entific Simulation) project is a collaborative effort to de-
velop a framework for scientific simulation using adaptive
multiresolution analysis methods in multiwavelet bases [38].
The first step in every MADNESS execution is to project
a user-supplied analytic function into its numerical repre-
sentation through adaptive spatial decomposition. For our
kernel we consider functions in 3-dimensions, resulting in
an oct-tree based numerical representation of the analytic
function.

Projection begins with a fixed 3d volume over which the
analytic function is sampled to derive the numeric represen-
tation. The accuracy of the representation is then examined
and if it is not high enough, the 3d space is split into 8 sub-
spaces and each subspace is recursively processed until the
desired accuracy has been reached. The size and shape of the
resulting task tree is highly dependent on the user-supplied
analytic function making MADNESS a good candidate for
dynamic load balancing.

2.5.2 The Unbalanced Tree Search Benchmark

The Unbalanced Tree Search benchmark (UTS) models
the parallel performance of state space exploration and com-
binatorial search problems by measuring the performance
achieved when performing an exhaustive parallel depth-first
search on a parametrized, unbalanced tree [13, 14, 31, 32].
The tree is constructed using a splittable, deterministic ran-
dom stream generated using the SHA-1 secure hash algo-
rithm. Each node is represented by a 20-byte SHA-1 di-
gest and its children are found by applying the SHA-1 algo-
rithm to the parent node’s digest combined with the child
id. There is a high degree of variation in the size of each sub-
tree rooted at any given node in a UTS tree. Thus, if each
node is taken as a task in a UTS execution there is a high
degree of variation in the amount of work contained within
each task. These properties make UTS a challenging prob-
lem that is effective for evaluating dynamic load balancing
schemes.

2.5.3 Bouncing Producer-Consumer Benchmark

The Bouncing Producer-Consumer (BPC) benchmark is
a producer-consumer benchmark with a twist: the producer
process may change as the result of a steal operation. This
benchmark is intended to create a scenario where locating
work is challenging due to the migrating producer.

BPC is a task-parallel benchmark that dynamically pro-
duces two kinds of tasks: producer tasks and consumer
tasks. In the example task tree shown in Figure 1 producer
tasks are shown in black and consumer tasks are shown in
white. Each producer task produces one producer task fol-
lowed by n consumer tasks. The corresponding dequeue has
the producer task at its tail making it the first task that will
be stolen and the process that steals it will become the new

...

...

...
...

Figure 1: Bouncing producer consumer example
tree and corresponding task queue. The next pro-
ducer node resides at the tail of the queue, available
to be stolen.

producer. This process is repeated until a maximum depth
d is reached.

3. RUNTIME INFRASTRUCTURE
In this section we present the design of our work stealing

runtime system. We propose and explore the performance
impact of split task queues that eliminate locking on the
local process’ critical path and reduce contention; schemes
to reduce the overhead of task creation; a work splitting
scheme that enhances scalability by maximizing the avail-
ability of work; and we discuss the impact of data server
responsiveness on scalability.

3.1 Split Task Queues
It is essential that the task queue provide efficient local

access, as enqueue and dequeue operations are executed on
the critical path. A fully shared task queue would require
expensive locking for every access to the task queue. This
locking can be eliminated by using two queues per process:
one for storing a portion of the work reserved by the local
process and a second queue to store shared work. How-
ever, whenever work is moved between the local and shared
queues a memory copy must be performed. This memory
copy can be eliminated by using a single task queue that
is split into private and public portions as described in our
prior work [12].

The split task queue is shown in Figure 2. This queue
splits a single shared queue into a local access only por-
tion and a shared portion. The local portion is located be-
tween the head and split pointers and the shared portion
is located between the tail and split pointers. The local
portion of the queue can be accessed by the local process
without locking and the shared portion can be accessed by
any process and accesses are synchronized via a lock. The
local process only needs to take the lock when adjusting the
distribution of work between the public and private portions
of the queue.

When using the split queue, the local process must peri-
odically check to ensure that it is exposing enough surplus
work in the public portion of its queue by moving the split
toward the head of the queue. We refer to the operation of
advancing the split toward the head of the queue as a release

Tail Split Head

Figure 2: Split Queue: Allows lock-free local access
to the private portion of the queue and provides
zero-copy transfers between public and private por-
tions of the queue.

operation. Releases must be performed periodically to en-
sure that enough work is available for idle processes to steal.
Likewise, when the local process has exhausted the work in
the private portion of its queue, it performs a reacquire op-
eration to move the split toward the tail of the queue and
reclaim public work into the private portion of the queue.

3.2 Lockless Release Operations
We have further improved on the split queue presented in

[12] by reorganizing the queue metadata. In our prior work
we maintained the queue using the metadata {tail, npub-

lic, split, head, nprivate}, where npublic and npri-

vate maintain the number of tasks in the public and pri-
vate portions of the queue, respectively. Under this scheme,
modifications to tail, npublic and split (due to its depen-
dence on npublic) had to be performed under lock. Thus,
the queue must be locked when performing both release and
reacquire operations.

If we further distill the queue metadata to {tail, split,

nlocal} then we can remove the need to lock when perform-
ing release operations. Using this new metadata, npublic
and the head pointer are calculated on demand through sim-
ple arithmetic rather than stored. Using this new scheme,
only updates to the tail pointer need to be synchronized,
allowing data to be moved from the private portion of the
queue to the public portion of the queue without locking.
Because a release operation modifies the split and nlo-

cal metadata and a steal operation modifies only the tail

metadata, this scheme makes it possible to support a release
operation concurrently with a steal operation. If the process
performing the steal operation sees the old value for split,
it simply appears that less work is available than is actu-
ally present in the public portion of the queue, which does
not impact correctness. Thus, this metadata scheme enables
lockless release operations to be performed.

Figure 3 compares the performance of the split queue with
lockless release with the performance of a shared queue that
requires locking for all accesses to the queue. In this exper-
iment we ran the bouncing producer consumer benchmark
with producers that produce n = 64 tasks that each perform
1 msec of work and a total depth d = 32,768. At low proces-
sor counts, the parallel slack is relatively high and contention
remains low. However, as the processor count is increased,
producers have to contend with thieves to acquire the lock
for their queue and enqueue new tasks. Performance be-
gins to degrade past 128 processors as the time required to
enqueue new tasks grows due to lock contention.

3.3 Efficient Task Creation
The overhead of task creation is an important factor af-

fecting task pool performance as many applications perform

 0

 50

 100

 150

 200

 250

 0 32 64 96 128 160 192 224 256

P
e
rf

o
rm

a
n
c
e
 (

k
N

o
d
e
s
/s

e
c
)

Number of Processors

Bouncing Producer-Consumer Benchmark

Split Queue
Locked Queue

Figure 3: Performance of split vs locked task queues
for the BPC benchmark with n = 64 and d = 32768.

dynamic task creation on their critical path. As shown in
Table 1, the UTS benchmark has a very short average task
length but generates very large numbers of tasks. For ap-
plications that exhibit such characteristics, the efficiency of
task creation can have a significant impact on performance.

The process of task creation involves three steps:

1. Create a task descriptor

2. Populate the descriptor with task arguments

3. Enqueue the task

In step 1, a temporary buffer is allocated to hold the task
descriptor. In step 2, data is copied into the task descriptor,
and in step 3 the data is copied from the user’s buffer into
the task queue.

Since task descriptor buffers are generally short lived, a
simple optimization is to recycle buffers to eliminate calls
to the memory allocator in step 1. Furthermore, if the pro-
grammer knows that the head of the queue does not need
to be accessed while the task is being created, further op-
timization is possible by allocating the new task descriptor
directly from the head of the queue. We call this optimiza-
tion in-place task creation and it eliminates both the memory
allocation in step 1 and the copy operation in step 3.

We compare the performance of these three schemes in
Figure 4. Adding buffer recycling provides a significant ben-
efit over the baseline approach for very small tasks. How-
ever, for larger tasks the cost of allocation is amortized by
the cost of performing the copy operations. In-place task
creation provides roughly a 15% performance improvement,
which may seem smaller than expected, as it eliminates both
the memory allocation and a copy. The reason that the gain
from eliminating the second copy operation is not larger is
that the data copy performed in step 3 is less expensive than
the data copy performed in step 2, due to cache effects - the
copy in step 2 brings the data into cache and the copy in
step 3 is performed with the input data already in cache.

3.4 Work Splitting
When performing a steal operation, a thief must deter-

mine how much work to steal. In the general work stealing

 0

 5

 10

 15

 20

 25

 30

 35

 0 512 1024 1536 2048 2560 3072 3584 4096

T
im

e
 (

u
s
e
c
)

Task Size (Bytes)

Baseline
Buffer Recycling

In-place

Figure 4: Task creation times for baseline, buffer
recycling, and in-place task creation schemes.

algorithm, the thief attempts to balance the load evenly be-
tween itself and the victim [3, 23, 27]. Work stealing load
balancers that focus on recursive parallelism, such as Cilk’s
runtime system, take the approach of stealing the task from
the tail of the victim’s queue. These systems reason that
since the task stolen was at the tail of the queue it is likely to
be of the largest granularity and roughly half of the victim’s
work [5]. For cilk-style applications this approach yields
good performance, however for non-strict computations this
strategy can yield an unstable load imbalance [3].

Many applications of interest do not follow a recursive par-
allel style or yield tasks where the amount of work present
in each task varies widely. In our system, we wish to apply
a strategy that will apply to a broad class of computations
so we must not rely on a particular structure or task gran-
ularity. In addition we must satisfy the stability constraint
given by Berenbrink et al in [3]. This constraint states that
given a victim with l work and a work splitting function f :

f = ω(1) (1)

and

0 ≤ f(l) ≤ l/2 (2)

In our system we use the work splitting function, f , that
selects half of the tasks on the victim’s public queue for
stealing. This approach satisfies the stability constraint for
arbitrary l and also allows us to maximize the number of
work sources in the computation. In the common case, this
strategy leaves the victim with half of the work still available
in its public queue and provides the thief with enough work
so that it too can put surplus tasks in its public queue. By
maximizing the number of work sources, we aim to enhance
scalability by decreasing the average time required by any
process to locate and steal work.

We evaluate the performance of this scheme in Figure 5 in
the context of the Unbalanced Tree Search benchmark. In
this figure, we present the performance of UTS performing
parallel exploration of a highly unbalanced tree for three
schemes: steal-half, steal-1, and steal-2. UTS generates
tasks recursively and thus has a workload where the steal-

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 32 64 96 128 160 192 224 256

P
e
rf

o
rm

a
n
c
e
 (

M
N

o
d
e
s
/s

e
c
)

Number of Processors

UTS Benchmark

Steal Half
Steal 2
Steal 1

Figure 5: Impact of steal-half over steal-1 (Cilk-
style) and steal-2.

n strategy is stable. We see that all schemes scale well to
64 processors, however as the processor count is increased,
work becomes harder to find and the steal-1 scheme loses
performance as most processors are idle searching for work.
Stealing two tasks during each steal operation helps to better
distribute the work, but it still does not scale past 128 pro-
cessors. Performing steal-half gives the best performance,
yielding over 95% efficiency on 256 processors. For this
experiment, steal-half transferred an overall average of 3.8
tasks per load balancing operation.

3.5 ARMCI Runtime System
On many platforms, ARMCI’s runtime system spawns one

data server thread per SMP node to efficiently support prim-
itives such as accumulate and strided/vector RDMA, and to
guarantee progress for one-sided operations. Additionally,
the data server has the job of ensuring portable support for
the variety of atomic operations provided by ARMCI. The
default behavior of the data server thread is to block on an
incoming message and yield its processor to the application.
However, we found that this mode of operation introduced
long latencies for the atomic operations required to imple-
ment work stealing. In this mode, when thieves perform
a steal they must not only wait for the operating system
to schedule the data server thread, but also for the data
server to receive a signal from the networking layer indicat-
ing that a message has arrived. These combined overheads
often caused an operation that should take tens of microsec-
onds to take tens of milliseconds or more, depending on how
heavily loaded the remote node was. Due to these overheads
and because the data server is responsible for servicing re-
quests for the entire SMP node, we found that with an un-
pinned data server even small amounts of contention could
result in very long wait times.

In order to eliminate these overheads, ARMCI provides an
alternative mode of operation where the data server thread
remains bound to a core and actively polls the network
for incoming requests. This eliminates latencies due to OS
scheduler noise and blocking on a signal from the network-
ing layer. On our test system which is configured with eight
cores per node, we found that dedicating a core to the data

server is essential to lowering the latency of steal operations,
tolerating contention, and achieving scalability.

4. SCALABLE WORK DISCOVERY
The performance and scalability of work stealing depends

heavily on the cost of ensuring mutually exclusive access to
the shared portion of each process’ queue and the perfor-
mance of this mechanism under contention.

4.1 ARMCI Locks
ARMCI provides a locking mechanism that uses a simpli-

fied version of the bakery (aka deli counter) algorithm for
mutual exclusion [25]. It uses two shared global counters:
next ticket and current ticket. The locking mechanism is
analogous to the ticket scheme used in many bakeries: new
customers take a ticket when they arrive in the bakery and
they are waited on when the number on their ticket comes
up.

Under this scheme, when a process executes a lock opera-
tion, it first performs an atomic fetch-and-increment opera-
tion on next ticket and stores the value fetched in t. It then
enters a a loop where it waits until current ticket = t. Once
current ticket = t the process may enter its critical section.
When the process has finished executing its critical section,
it increments next ticket, allowing the next process in line
to enter its critical section. This algorithm is considered fair
because it ensures FIFO access to the resource guarded by
the lock.

4.2 Spinlocks
An alternative locking scheme is to create spinlocks using

ARMCI’s atomic swap operation, as shown in Algorithm 3.
Spinlocks require a single communication operation to ob-
tain a lock, whereas ARMCI’s locks require an atomic in-
crement followed by a get operation. Thus, if the lock is
uncontended, spinlocks may provide a more efficient locking
mechanism.

In comparison with ARMCI’s locks which ensure fair, FIFO
access, spinlocks don’t guarantee access and can lead to star-
vation. In addition, spinlocks spin using an atomic opera-
tion that must be implemented using ARMCI’s data server,
whereas ARMCI locks spin using a one-sided get() operation
that is supported by RDMA interconnects. Hence spinlocks
may also perform worse under contention.

Algorithm 3 Spinlock lock() operation using atomic swap

{ Let lv be a lock on victim v }
oldval← LOCKED
while oldval 6= UNLOCKED do

atomic swap(oldval, lv)
if oldval 6= UNLOCKED then
{ Perform linear backoff to avoid flooding the victim
with lock traffic }

end if
end while

4.3 Aborting Steals
ARMCI’s fair locks offer better performance under con-

tention and are starvation free. However, in the case of
work stealing they can cause a process to wait to steal from
a queue that has been emptied by processes ahead of it in

line. Because the process attempting the lock has already
acquired a resource by taking a ticket, it must wait for its
turn to release the resource even if it realizes that the queue
it is waiting on has been emptied.

Spinlocks, on the other hand, allow the process attempting
the lock to abort at any time. This provides the process
the ability to abort a steal operation if it determines that
the victim no longer has any work available. While waiting
on the lock for a remote queue, the thief can periodically
fetch the remote queue’s metadata to determine if it still has
work available. If no more work is available, the thief can
simply abort the lock operation and select a different victim.
In comparison, when using ARMCI locks, even if the thief
determines that the victim has no more work available, it
must continue to wait until its ticket is up so it can increment
the current ticket counter, signaling the next process in line
that it may access the victim’s queue. This requires waiting
O(T) steps, where T is the number of thieves in line, for
each thief to release the lock.

5. EXPERIMENTAL RESULTS
We evaluated the performance of our scheme at scale using

three benchmarks: MADNESS, UTS, and BPC described in
Section 2.5. Experiments were conducted on a 2,310 node
Hewlett Packard cluster located at Pacific Northwest Na-
tional Laboratory. Each node is configured with two quad-
core AMD Barcelona processors running at 2.2 GHz and In-
finiband interconnect. Compute nodes run the GNU/Linux
operating system and the message passing layer used was
HP-MPI.

5.1 Benchmark Workloads
In this section we conduct strong scaling experiments to

evaluate the scalability of our system. For these experi-
ments, the Madness kernel performed tree creation on a
128 element soft body system; the Unbalanced Tree Search
benchmark performed exhaustive search on an unbalanced
270,751,679,750 node geometric tree with depth 18; and the
Bouncing Producer Consumer (BPC) benchmark was run on
a problem where each producer produced n = 8192 10msec
tasks with a total depth d = 4096. The total number of
tasks and average task execution time these each workload
is given in Table 1.

Benchmark Total Tasks Avg. Task Time
Madness 1,801,353 102.28073 ms

BPC 33,558,529 9.96720 ms
UTS 270,751,679,750 0.00066 ms

Table 1: Benchmarking workload characteristics.

All three benchmarks start from a single task and dynam-
ically generate subtasks. In the case of Madness, each task
corresponds to a 3-dimensional region of space which may
be subdivided to get finer precision for the numerical rep-
resentation where needed. Each adaptive refinement results
in 8 new subtasks. In BPC, each producer task produces
1 producer task and 4096 consumer tasks which are leafs
and do not produce any subtasks. Finally, UTS was run to
produce an unbalanced trees where the expected number of
children per node is geometric in the depth of the tree and
proportional to the branching factor, b0 = 4.

5.2 Scalability Study
In Figure 6 we show strong scaling experiments for each

of the schemes discussed in Section 4. For each benchmark,
we show the performance achieved from 512 to 8192 cores.
Performance is reported as the total throughput in terms
of thousands of nodes visited per second (kNodes/sec) to
billions of nodes visited per second (GNodes/sec). We also
report the efficiency of each execution as the percent of the
total execution time spent executing tasks. This efficiency
measurement separates the total execution time into active
time, or time when a user task is executing, and idle time,
or time spent searching for work. With this data we wish
to characterize the load balance and have not subtracted
any performance lost due to overheads, such as time lost
when enqueueing tasks or balancing the queues. In general
these overheads are low since we have created schemes to
eliminate locking from the critical path and perform in-place
task creation.

The benchmark data presented in Figure 6 is organized
from left to right in decreasing task granularity with compa-
rable runs of Madness processing tens of thousands of tasks
per second; BPC, hundreds of thousands of tasks per sec-
ond; and UTS, billions of tasks per second. As the number
of cores is increased, Madness and BPC expose parallelism
more slowly leading to limited parallel slack and creating the
potential for long search times and high contention. UTS,
in comparison, produces new work very rapidly and has a
high degree of parallel slack. However, due to imbalance in
the search space processes frequently run out of work as the
subtree they are exploring terminates. For this reason, UTS
requires lightweight load balancing, as the need to perform
frequent load balancing can lead to high overheads.

The ARMCI and spin lock schemes scale to 4096 proces-
sors, however past this point limited parallel slack leads to
contention to steal from the limited number of processes that
have surplus work and long waits for thieves that frequently
result in no work being stolen. By comparing the perfor-
mance of ARMCI’s locks with spinlocks, we clearly see that
for Madness and BPC ARMCI’s locks offer better perfor-
mance. However, for UTS which exhibits a high degree of
parallel slack, there is relatively little contention and spin-
locks outperform ARMCI locks because they require only
a single communication operation to take a lock, whereas
ARMCI locks require two communication operations.

When contention is high and parallel slack is limited,
steal operations performed using the ARMCI and spin lock
schemes can often result in a long wait where the victim’s
work dries up before all the thieves targeting it get work. In
order to address this problem, we have implemented abort-
ing steals which periodically check if the victim still has work
available to avoid waiting on a stale queue. We see in Fig-
ure 6 that this scheme addresses the critical performance
problem for Madness and BPC. For Madness, the aborting
steals scheme achieves 88% efficiency on 8,192 cores in spite
of severely limited parallel slack and for BPC it achieves 97%
efficiency. For the UTS benchmark which has a high degree
of parallel slack, the aborting steals scheme achieves the best
performance with an efficiency of 99% on 8,192 cores. This
is because it is built using spinlocks which are less expensive
than ARMCI locks when the lock is uncontended.

5.3 Failed and Aborted Steals
We present the total number of failed and aborted steals

 0

 10

 20

 30

 40

 50

 60

 70

 0 1024 2048 3072 4096 5120 6144 7168 8192

P
e

rf
o

rm
a

n
c
e

 (
k
N

o
d

e
s
/s

e
c
)

Number of Processors

Madness 3d Tree Creation Kernel

ARMCI Locks
Spin Locks

Aborting Steals

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1024 2048 3072 4096 5120 6144 7168 8192

P
e

rf
o

rm
a

n
c
e

 (
k
N

o
d

e
s
/s

e
c
)

Number of Processors

Bouncing Producer-Consumer Benchmark

ARMCI Locks
Spin Locks

Aborting Steals

 0

 2

 4

 6

 8

 10

 12

 14

 0 1024 2048 3072 4096 5120 6144 7168 8192

P
e

rf
o

rm
a

n
c
e

 (
G

N
o

d
e

s
/s

e
c
)

Number of Processors

UTS Benchmark

ARMCI Locks
Spin Locks

Aborting Steals

 40

 50

 60

 70

 80

 90

 100

 0 1024 2048 3072 4096 5120 6144 7168 8192

E
ff

ic
ie

n
c
y

Number of Processors

Madness 3d Tree Creation Kernel

ARMCI Locks
Spin Locks

Aborting Steals
 40

 50

 60

 70

 80

 90

 100

 0 1024 2048 3072 4096 5120 6144 7168 8192

E
ff

ic
ie

n
c
y

Number of Processors

Bouncing Producer-Consumer Benchmark

ARMCI Locks
Spin Locks

Aborting Steals
 40

 50

 60

 70

 80

 90

 100

 0 1024 2048 3072 4096 5120 6144 7168 8192

E
ff

ic
ie

n
c
y

Number of Processors

UTS Benchmark

ARMCI Locks
Spin Locks

Aborting Steals

Figure 6: Performance and percent efficiency for Madness, the BPC benchmark, and UTS on 8,192 cores.

for each scheme in Figure 7. Failed steals are steal opera-
tions where the thief has acquired a lock on the victim, only
to discover that the victim has no work available. Failed
steals are an indication of the amount of contention present
when accessing the shared portion of the queue. This con-
tention can arise due to remote access by multiple processes
or due to the local process performing reacquire operations
concurrently with remote processes attempting to perform
a steal.

Aborted steals are steal operations where the thief aborts
the current victim without acquiring the lock, because it has
determined that the victim has no work available. Aborted
steals can occur under all schemes during victim selection
when the thief initially fetches the victim’s metadata to de-
termine if it has any work available before attempting to
lock the shared portion of the victim’s queue. In the abort-
ing steals scheme, this check is performed periodically even
after a thief has decided to follow through with a steal on
the current victim. If the thief determines that the victim
no longer has work available, it can abort its current steal
operation and move on to a different victim. Thus, the num-
ber of aborted steals reflects the parallel slack or the general
availability of work present in the computation.

For Madness and BPC, we see that the performance loss
past 4,096 processors is due to the large number of failed
steals. The ARMCI and Spin locking schemes experienced
between 2.5 to 3 billion failed steals compared with 0.25 bil-
lion for the Aborting steals scheme. If we look at the num-
ber of aborted steals for Madness, we see that the Abort-
ing steals scheme performed twice as many aborts as the
ARMCI locking scheme. This indicates that during execu-
tion of the Madness benchmark, idle processes experienced
long searches for work due to limited parallel slack, which
accounts for its 12% loss of efficiency at scale.

For BPC, we see that, surprisingly, the number of aborted
steals is similar for all three schemes. This indicates that the
primary cause for performance loss is due to a small number
of pileups where multiple consumers were all waiting on a

single producer. These pileups can be a significant perfor-
mance problem for the ARMCI and Spin locks schemes be-
cause multiple thieves will have to wait for others to acquire
the lock on the remote process, fail on the steal operation,
and unlock before they themselves can move on to another
victim. Thus, allowing consumers to abort when they de-
tect that a producer’s work has been exhausted eliminates
a possibly linear time wait to abort the steal on the current
victim.

In addition to this, ARMCI and Spin locks both spin on
the lock which can cause scalability issues as the networking
layer for the process that owns the lock may become sat-
urated by remote lock operations. In the case of ARMCI
locks, the remote process issues repeated one-sided get() op-
erations to fetch the current ticket counter. On our ex-
perimental system, these requests are truly one-sided and
are performed using Infiniband RDMA operations. Spin
locks perform repeated atomic swap operations which are
serviced by ARMCI’s remote data server. From the per-
formance data, we can see that ARMCI’s locks scale better
under contention as the data server becomes more quickly
saturated with requests.

If we compare the number of failed steals for ARMCI and
Spin locks in Figure 7, an interesting trend emerges: in the
case of Madness and BPC, spin locks cause an increase in
the number of failures, while in the case of UTS they cause
a decrease in the number of failures. This phenomenon is
due to how spin locks influence the behavior of the reac-
quire operation. As described in Section 3.1, a reacquire
operation is performed when a process transfers work from
the public portion of its queue to the private portion of its
queue. When using ARMCI locks, this means that the local
process must take a ticket and wait in line behind any other
processes to acquire the lock on the public portion of its
own queue. When using spin locks, the local process issues
native atomic exchange instructions to acquire its lock. The
local process can issue these instructions orders of magnitude
more quickly than remote processes can issue atomic swap

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1024 2048 3072 4096 5120 6144 7168 8192

N
u

m
b

e
r

o
f

A
b

o
rt

e
d

 S
te

a
ls

 (
M

S
te

a
ls

)

Number of Processors

Madness 3d Tree Creation Kernel

ARMCI Locks
Spin Locks

Aborting Steals

 0

 5

 10

 15

 20

 25

 0 1024 2048 3072 4096 5120 6144 7168 8192

N
u

m
b

e
r

o
f

A
b

o
rt

e
d

 S
te

a
ls

 (
M

S
te

a
ls

)

Number of Processors

Bouncing Producer-Consumer Benchmark

ARMCI Locks
Spin Locks

Aborting Steals

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 1024 2048 3072 4096 5120 6144 7168 8192

N
u

m
b

e
r

o
f

A
b

o
rt

e
d

 S
te

a
ls

 (
M

S
te

a
ls

)

Number of Processors

UTS Benchmark

ARMCI Locks
Spin Locks

Aborting Steals

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1024 2048 3072 4096 5120 6144 7168 8192

N
u

m
b

e
r

o
f

F
a

ile
d

 S
te

a
ls

 (
G

S
te

a
ls

)

Number of Processors

Madness 3d Tree Creation Kernel

ARMCI Locks
Spin Locks

Aborting Steals

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1024 2048 3072 4096 5120 6144 7168 8192

N
u

m
b

e
r

o
f

F
a

ile
d

 S
te

a
ls

 (
G

S
te

a
ls

)

Number of Processors

Bouncing Producer-Consumer Benchmark

ARMCI Locks
Spin Locks

Aborting Steals

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1024 2048 3072 4096 5120 6144 7168 8192

N
u

m
b

e
r

o
f

F
a

ile
d

 S
te

a
ls

 (
G

S
te

a
ls

)

Number of Processors

UTS Benchmark

ARMCI Locks
Spin Locks

Aborting Steals

Figure 7: Total number of aborted and failed steals for Madness, UTS, and the BPC benchmark.

operations over the network. This effectively prioritizes the
local process during a reacquire operation. This allows the
local process to jump ahead of the queue and reclaim any
shared work, causing many of the processes attempting to
steal from it to fail. Thus, the total number of failures in-
curred when using spin locks is higher for both Madness and
BPC.

In comparison with Madness and BPC, the duration of a
UTS task is roughly three orders of magnitude shorter. Be-
cause of this, UTS also generates tasks orders of magnitude
more rapidly that Madness and BPC. For this application,
we observe that prioritizing the local process during reac-
quire operations gives a significant drop in the number of
failed steals. This is because the local process is able to
quickly reacquire work from the shared portion of its queue
and generate new tasks to satisfy the thieves waiting for the
lock on its queue before their steal operation fails.

6. RELATED WORK
Load balancing is a challenging problem and has been

widely studied in the literature. Research on task graph
scheduling [24] focuses on optimizing the execution time
given a set of tasks organized as a task graph. Graph and
hypergraph partitioning techniques [7, 11, 21, 35] have been
employed to schedule tasks onto processors to balance load
while taking into account data locality. We have addressed
the problem of locality-aware load balancing for a set of in-
dependent tasks [2, 22]. Unlike in this paper, these works
assumed knowledge of all the tasks to be executed before
any tasks was executed.

OpenMP exploits parallelism at the loop level by dis-
tributing different iterations to different processors. While
most of the work on OpenMP has focused on shared mem-
ory machines, recent efforts address the problems of op-
timizing OpenMP programs for distributed memory ma-
chines [19]. HPCS languages such as X10 [9], Chapel [8] and
Fortress [34], and PGAS languages such as Titanium [39]

and UPC [36] extend OpenMP’s parallelism constructs and
are focussed on scaling to the largest distributed memory
machines available. These languages motivate our focus on
dynamic load balancing at scale. The scalable implemen-
tation of the powerful task models of these new languages
is still a challenging problem and we believe that the im-
plementation and evaluation in this paper can offer useful
insights to their implementers.

Charm++ [20] employs a phase-based dynamic load bal-
ancing scheme facilitated by virtualization. The computa-
tion is monitored for load imbalance and computation ob-
jects are migrated between phases to restore balance. While
our idea of migrateable tasks is similar in spirit to virtualiza-
tion in Charm++, the tasks in our context are much more
fine grained and the load balancing is more dynamic and
within each phase. Our implementation can be combined
with a phased based load balancer, such as in Charm++, to
provide hierarchical load balancing.

Cilk [16] supports load balancing of fully strict compu-
tations based on work stealing. X10 work stealing [10] ex-
tends the Cilk algorithm to support terminally strict com-
putations and several other extensions. Recent work [26]
has investigated execution models in which each task is ex-
ecuted at least once rather than exactly once. NESL [4]
allows for locality aware work stealing. All these efforts fo-
cus on work stealing in the context of shared memory (or
distributed shared memory) systems. Guo et al. [17] intro-
duce and evaluate the help first scheduling policy on shared
memory machines to increase parallelism in the application
faster than Cilk-style work first execution. This approach
is complementary to schemes we have evaluated to optimize
the amount of work stolen and the cost of finding work.

Cilk NOW [6] extends Cilk to networks of workstations
and adds support for adaptive parallelism and fault toler-
ance. Dynamic load balancing based on work stealing has
been studied in various application contexts on distributed
memory machines [23, 33] and on wide area networks [37].

Some of the techniques presented in the paper were ini-

tially explored in prior work on optimizing the Unbalanced
Tree Search Benchmark (UTS) [13, 14, 31, 32] and the Scioto
[12] infrastructure. Non-blocking work stealing [1, 18] has
been studied in the literature. However, the implications of
such a design on the performance of work stealing at scale
has not been evaluated.

Our work in scaling work stealing to over 8000 processes
has brought forth new issues, which we have discussed in
this paper. We are not aware of any prior demonstrations of
scalable load balancing through work stealing at such scale.

7. CONCLUSION
We have presented a runtime system for supporting work

stealing on 8,192 processing cores on a distributed memory
cluster. Scalability of work stealing on such a system was
achieved through techniques such as split task queues and
in-place task creation that reduce contention and optimize
critical operations, a work splitting strategy that maximizes
the number of work sources, and an efficient work discov-
ery scheme that allows thieves to abort stale victims. We
evaluated the performance of this runtime system on three
benchmarks: a multiresolution analysis kernel, a producer-
consumer benchmark, and a state space exploration bench-
mark. On these benchmarks our system was able to achieve
88%, 97%, and 99% efficiency, respectively.

8. REFERENCES

[1] N. S. Arora, R. D. Blumofe, and C. G. Plaxton.
Thread scheduling for multiprogrammed
multiprocessors. In Proc. 10th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pages
119–129, 1998.

[2] G. Baumgartner, A. Auer, D. E. Bernholdt,
A. Bibireata, V. Choppella, D. Cociorva, X. Gao, R. J.
Harrison, S. Hirata, S. Krishanmoorthy, S. Krishnan,
C.-C. Lam, Q. Lu, M. Nooijen, R. M. Pitzer,
J. Ramanujam, P. Sadayappan, and A. Sibiryakov.
Synthesis of high-performance parallel programs for a
class of ab initio quantum chemistry models.
Proceedings of the IEEE, 93(2):276–292, Feb. 2005.

[3] P. Berenbrink, T. Friedetzky, and L. Goldberg. The
natural work-stealing algorithm is stable. In Proc.
42nd IEEE Symposium on Foundations of Computer
Science (FOCS), pages 178–187, 2001.

[4] G. E. Blelloch and J. Greiner. A provable time and
space efflcient implementation of NESL. In Proc. 1st
ACM SIGPLAN Intl. Conf. on Functional
Programming (ICFP), pages 213–225, Philadelphia,
Pennsylvania, May 1996.

[5] R. D. Blumofe and C. Leiserson. Scheduling
multithreaded computations by work stealing. In Proc.
35th Symposium on Foundations of Computer Science
(FOCS), pages 356–368, Nov. 1994.

[6] R. D. Blumofe and P. A. Lisiecki. Adaptive and
reliable parallel computing on networks of
workstations. In Proc. USENIX Annual Technical
Conference (ATEC), pages 10–10, 1997.

[7] Ü. V. Çatalyürek, E. G. Boman, K. D. Devine,
D. Bozdag, R. Heaphy, and L. A. Riesen.
Hypergraph-based dynamic load balancing for
adaptive scientific computations. In Proc. 21st Intl.

Parallel and Distributed Processing Symposium
(IPDPS), pages 1–11. IEEE, 2007.

[8] B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the chapel language. Int. J. High
Performance Computing Applications (IJHPCA),
21(3):291–312, 2007.

[9] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. In Proc. Conf. on
Object Oriented Prog. Systems, Languages, and
Applications (OOPSLA), pages 519–538, 2005.

[10] G. Cong, S. Kodali, S. Krishnamoorty, D. Lea,
V. Saraswat, and T. Wen. Solving irregular graph
problems using adaptive work-stealing. In Proc. 37th
Int Conf. on Parallel Processing (ICPP), Portland,
OR, Sept. 2008.

[11] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A.
Hendrickson, J. D. Teresco, J. Faik, J. E. Flaherty,
and L. G. Gervasio. New challanges in dynamic load
balancing. J. Appl. Numer. Math., 52(2-3):133–152,
2005.

[12] J. Dinan, S. Krishnamoorthy, D. B. Larkins,
J. Nieplocha, and P. Sadayappan. Scioto: A
framework for global-view task parallelism. In Proc.
37th Intl. Conf. on Parallel Processing (ICPP), pages
586–593, 2008.

[13] J. Dinan, S. Olivier, G. Sabin, J. Prins,
P. Sadayappan, and C.-W. Tseng. Dynamic load
balancing of unbalanced computations using message
passing. In Proc. of 6th Intl. Workshop on
Performance Modeling, Evaluation, and Optimization
of Parallel and Distributed Systems (PMEO-PDS),
pages 1–8, 2007.

[14] J. Dinan, S. Olivier, G. Sabin, J. Prins,
P. Sadayappan, and C.-W. Tseng. A message passing
benchmark for unbalanced applications. J. Simulation
Modelling Practice and Theory, 16(9):1177 – 1189,
2008.

[15] N. Francez and M. Rodeh. Achieving distributed
termination without freezing. IEEE Trans. on
Software Engineering, SE-8(3):287–292, May 1982.

[16] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
In Proc. Conf. on Prog. Language Design and
Implementation (PLDI), pages 212–223. ACM
SIGPLAN, 1998.

[17] Y. Guo, R. Barik, R. Raman, and V. Sarkar.
Work-first and help-first scheduling policies for
terminally strict parallel programs. In Proc. 23rd Intl.
Parallel and Distributed Processing Symposium
(IPDPS), 2009.

[18] D. Hendler, Y. Lev, M. Moir, and N. Shavit. A
dynamic-sized nonblocking work stealing deque. J.
Distributed Computing, 18(3):189–207, 2006.

[19] Intel Corporation. Cluster OpenMP user’s guide v9.1.
(309096-002 US), 2005-2006.

[20] L. V. Kalé and S. Krishnan. CHARM++: A portable
concurrent object oriented system based on C++. In
Proc. Conf. on Object Oriented Prog. Systems,
Languages, and Applications (OOPSLA), pages
91–108, 1993.

[21] G. Karypis and V. Kumar. MeTis: Unstrctured Graph
Partitioning and Sparse Matrix Ordering System,
Version 4.0, Sept. 1998.

[22] S. Krishnamoorthy, Ü. Çatalyürek, J. Nieplocha,
A. Rountev, and P. Sadayappan. Hypergraph
partitioning for automatic memory hierarchy
management. In Proc. ACM/IEEE Conference
Supercomputing (SC), page 98, 2006.

[23] V. Kumar, A. Y. Grama, and N. R. Vempaty. Scalable
load balancing techniques for parallel computers. J.
Parallel Distrib. Comput., 22(1):60–79, 1994.

[24] Y.-K. Kwok and I. Ahmad. Static scheduling
algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys,
31(4):406–471, 1999.

[25] L. Lamport. A new solution of dijkstra’s concurrent
programming problem. Commun. ACM,
17(8):453–455, 1974.

[26] M. M. Michael, M. T. Vechev, and V. A. Saraswat.
Idempotent work stealing. In Proc. of the 14th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPOPP), pages 45–54, Feb.
2009.

[27] M. Mitzenmacher. Analyses of load stealing models
based on differential equations. In Proc. 10th
Symposium on Parallel Algorithms and Architectures
(SPAA), pages 212–221. ACM, 1998.

[28] MPI Forum. MPI: A message-passing interface
standard. Technical Report UT-CS-94-230, 1994.

[29] J. Nieplocha and B. Carpenter. ARMCI: A portable
remote memory copy library for distributed array
libraries and compiler run-time systems. Lecture Notes
in Computer Science, 1586:533–546, 1999.

[30] J. Nieplocha, R. J. Harrison, and R. J. Littlefield.
Global arrays: a portable “shared-memory“
programming model for distributed memory
computers. In Proc. ACM/IEEE Conference
Supercomputing (SC), pages 340–349, 1994.

[31] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan,
P. Sadayappan, and C.-W. Tseng. UTS: An
unbalanced tree search benchmark. In Proc. 19th Intl
Workshop on Languages and Compilers for Parallel
Computing (LCPC), pages 235–250, 2006.

[32] S. Olivier and J. Prins. Scalable dynamic load
balancing using UPC. In Proc. of 37th Intl.
Conference on Parallel Processing (ICPP), Sept. 2008.

[33] A. Sinha and L. V. Kalé. A load balancing strategy for
prioritized execution of tasks. In Proc. 7th Intl.
Parallel Processing Symposium (IPPS), pages
230–237, 1993.

[34] G. L. Steele Jr. Parallel programming and parallel
abstractions in fortress. In Proc. 14th Intl. Conf. on
Parallel Architecture and Compilation Techniques
(PACT), page 157, 2005.

[35] A. Trifunović and W. J. Knottenbelt. Parallel
multilevel algorithms for hypergraph partitioning. J.
Parallel Distrib. Comput., 68(5):563–581, 2008.

[36] UPC Consortium. UPC language specifications, v1.2.
Technical Report LBNL-59208, Lawrence Berkeley
National Lab, 2005.

[37] R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal.

Efficient load balancing for wide-area
divide-and-conquer applications. In Proc. of the ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPOPP), 2001.

[38] T. Yanai, G. I. Fann, Z. Gan, R. J. Harrison, and
G. Beylkin. Multiresolution quantum chemistry in
multiwavelet bases: Analytic derivatives for
hartree–fock and density functional theory. J.
Chemical Physics, 121(7):2866–2876, 2004.

[39] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto,
B. Liblit, A. Krishnamurthy, P. N. Hilfinger, S. L.
Graham, D. Gay, P. Colella, and A. Aiken. Titanium:
A high-performance java dialect. Concurrency:
Practice and Experience, 10(11-13):825–836, 1998.

